Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Schwessinger, Benjamin (Ed.)Lineage-specific genes (LSGs) have long been postulated to play roles in the establishment of genetic barriers to intercrossing and speciation. In the genome ofNeurospora crassa, most of the 670NeurosporaLSGs that are aggregated adjacent to the telomeres are clustered with 61% of the HET-domain genes, some of which regulate self-recognition and define vegetative incompatibility groups. In contrast, the LSG-encoding proteins possess few to no domains that would help to identify potential functional roles. Possible functional roles of LSGs were further assessed by performing transcriptomic profiling in genetic mutants and in response to environmental alterations, as well as examining gene knockouts for phenotypes. Among the 342 LSGs that are dynamically expressed during both asexual and sexual phases, 64% were detectable on unusual carbon sources such as furfural, a wildfire-produced chemical that is a strong inducer of sexual development, and the structurally-related furan 5-hydroxymethyl furfural (HMF). Expression of a significant portion of the LSGs was sensitive to light and temperature, factors that also regulate the switch from asexual to sexual reproduction. Furthermore, expression of the LSGs was significantly affected in the knockouts ofadv-1andpp-1that regulate hyphal communication, and expression of more than one quarter of the LSGs was affected by perturbation of the mating locus. These observations encouraged further investigation of the roles of clustered lineage-specific and HET-domain genes in ecology and reproduction regulation inNeurospora, especially the regulation of the switch from the asexual growth to sexual reproduction, in response to dramatic environmental conditions changes.more » « less
-
Abstract BackgroundCapturing the genetic diversity of wild relatives is crucial for improving crops because wild species are valuable sources of agronomic traits that are essential to enhance the sustainability and adaptability of domesticated cultivars. Genetic diversity across a genus can be captured in super-pangenomes, which provide a framework for interpreting genomic variations. ResultsHere we report the sequencing, assembly, and annotation of nine wild North American grape genomes, which are phased and scaffolded at chromosome scale. We generate a reference-unbiased super-pangenome using pairwise whole-genome alignment methods, revealing the extent of the genomic diversity among wild grape species from sequence to gene level. The pangenome graph captures genomic variation between haplotypes within a species and across the different species, and it accurately assesses the similarity of hybrids to their parents. The species selected to build the pangenome are a great representation of the genus, as illustrated by capturing known allelic variants in the sex-determining region and for Pierce’s disease resistance loci. Using pangenome-wide association analysis, we demonstrate the utility of the super-pangenome by effectively mapping short reads from genus-wide samples and identifying loci associated with salt tolerance in natural populations of grapes. ConclusionsThis study highlights how a reference-unbiased super-pangenome can reveal the genetic basis of adaptive traits from wild relatives and accelerate crop breeding research.more » « less
-
Phytophthora is a long-established, well known and globally important genus of plant pathogens. Phylogenetic evidence has shown that the biologically distinct, obligate biotrophic downy mildews evolved from Phytophthora at least twice. Since, cladistically, this renders Phytophthora ‘paraphyletic’, it has been proposed that Phytophthora evolutionary clades be split into multiple genera (Runge et al. 2011; Crous et al. 2021; Thines et al. 2023; Thines 2024). In this letter, we review arguments for the retention of the generic name Phytophthora with a broad circumscription made by Brasier et al. (2022) and by many delegates at an open workshop organized by the American Phytopathological Society. We present our well-considered responses to this proposal in general terms and to the specific proposals for new genera; together with new information regarding the biological properties and mode of origin of the Phytophthora clades. We consider that the proposals for new genera are mostly non-rigorous and not supported by the scientific evidence. Further, given (1) the apparent lack of any distinguishing biological characteristics (synapomorphies) between the Phytophthora clades; (2) the fundamental monophyly of Phytophthora in the original Haeckelian sense; (3) the fact that paraphyly is not a justification for taxonomic splitting; and (4) the considerable likely damage to effective scientific communication and disease management from an unnecessary break-up of the genus, we report that Workshop delegates voted unanimously in favour of preserving the current generic concept and for seeking endorsement of this view by a working group of the International Commission on the Taxonomy of Fungi.more » « lessFree, publicly-accessible full text available March 12, 2026
-
Abstract The origin of new genes has long been a central interest of evolutionary biologists. However, their novelty means that they evade reconstruction by the classical tools of evolutionary modelling. This evasion of deep ancestral investigation necessitates intensive study of model species within well‐sampled, recently diversified, clades. One such clade is the model genusNeurospora, members of which lack recent gene duplications. SeveralNeurosporaspecies are comprehensively characterized organisms apt for studying the evolution of lineage‐specific genes (LSGs). Using gene synteny, we documented that 78% ofNeurosporaLSG clusters are located adjacent to the telomeres featuring extensive tracts of non‐coding DNA and duplicated genes. Here, we report several instances of LSGs that are likely from regional rearrangements and potentially from gene rebirth. To broadly investigate the functions of LSGs, we assembled transcriptomics data from 68 experimental data points and identified co‐regulatory modules using Weighted Gene Correlation Network Analysis, revealing that LSGs are widely but peripherally involved in known regulatory machinery for diverse functions. The ancestral status of the LSGmas‐1, a gene with roles in cell‐wall integrity and cellular sensitivity to antifungal toxins, was investigated in detail alongside its genomic neighbours, indicating that it arose from an ancient lysophospholipase precursor that is ubiquitous in lineages of the Sordariomycetes. Our discoveries illuminate a “rummage region” in theN. crassagenome that enables the formation of new genes and functions to arise via gene duplication and relocation, followed by fast mutation and recombination facilitated by sequence repeats and unconstrained non‐coding sequences.more » « less
An official website of the United States government
